Embed Text
POST/v1/embedding/text
Generates text embeddings
nomic-embed-text
was trained to support these tasks:
search_document
(embedding document chunks for search & retrieval)search_query
(embedding queries for search & retrieval)classification
(embeddings for text classification)clustering
(embeddings for cluster visualization)
In the Nomic API or Python client, specify your task with the task_type
parameter (default is search_document
if no task_type
is provided)
Using nomic-embed-text
with other libraries requires you to use a prefix to specify your embedding task. See our HuggingFace model card for details.
Request
- application/json
Body
required
- MOD1
- MOD1
A batch of text you want embedded.
Possible values: [nomic-embed-text-v1
, nomic-embed-text-v1.5
]
Default value: nomic-embed-text-v1
The model to use when embedding.
task_type
object
The downstream task to generate embeddings for. Options are search_document
, search_query
, classification
, and clustering
.
anyOf
string
Possible values: [truncate
, mean
]
Default value: mean
How to handle text longer than the model can accept.
Default value: 8192
Maximum amount of tokens per text. Defaults to 8192 if long_text_mode
is "mean", or the maximum model input size if long_text_mode
is "truncate".
dimensionality
object
Optionally reduce embedding dimensionality. Defaults to full-size embeddings if unspecified. Only applies to nomic-embed-text-v1.5
.
anyOf
integer
Responses
- 200
- 422
Successful Response
- application/json
- Schema
- Example (from schema)
Schema
The embeddings
usage
object
required
The embedding usage
The number of non-generated tokens ingested.
The total tokens used.
Possible values: [nomic-embed-text-v1
, nomic-embed-text-v1.5
]
The model used to produce the embeddings.
{
"embeddings": [
[
0
]
],
"usage": {
"prompt_tokens": 0,
"total_tokens": 0
},
"model": "nomic-embed-text-v1"
}
Validation Error
- application/json
- Schema
- Example (from schema)
Schema
Array [
Array [
- MOD1
- MOD2
]
]
detail
object[]
loc
object[]
required
anyOf
string
integer
{
"detail": [
{
"loc": [
"string",
0
],
"msg": "string",
"type": "string"
}
]
}